3,070 research outputs found

    Nontrivial Polydispersity Exponents in Aggregation Models

    Full text link
    We consider the scaling solutions of Smoluchowski's equation of irreversible aggregation, for a non gelling collision kernel. The scaling mass distribution f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now, only be computed by numerical simulations. We develop here new general methods to obtain exact bounds and good approximations of Ï„\tau. For the specific kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R is the particle radius), perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequalities for tau and develop a variational approximation which is used to carry out the first systematic study of tau(d,D) for KdD. The agreement is excellent both with the expansions we derived and with existing numerical values. Finally, we discuss a possible application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor corrections. Notations improved, as published in Phys. Rev. E 55, 546

    A case of toxicity to excess 'carbocaine' with probable reactivity of rheumatic disease

    Get PDF
    No Abstrac

    Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation

    Get PDF
    The persistence probability, PC(t)P_C(t), of a cluster to remain unaggregated is studied in cluster-cluster aggregation, when the diffusion coefficient of a cluster depends on its size ss as D(s)∼sγD(s) \sim s^\gamma. In the mean-field the problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For γ≥0\gamma \ge 0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a correct description. For γ<0\gamma < 0 the spatial fluctuations remain relevant and the persistence probability is overestimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size distribution. For 0<γ<20 < \gamma < 2 the distribution is flat and, surprisingly, independent of γ\gamma.Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
    • …
    corecore